Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.172
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 293, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592508

RESUMO

Kluyveromyces marxianus has become an attractive non-conventional yeast cell factory due to its advantageous properties such as high thermal tolerance and rapid growth. Succinic acid (SA) is an important platform molecule that has been applied in various industries such as food, material, cosmetics, and pharmaceuticals. SA bioproduction may be compromised by its toxicity. Besides, metabolite-responsive promoters are known to be important for dynamic control of gene transcription. Therefore, studies on global gene transcription under various SA concentrations are of great importance. Here, comparative transcriptome changes of K. marxianus exposed to various concentrations of SA were analyzed. Enrichment and analysis of gene clusters revealed repression of the tricarboxylic acid cycle and glyoxylate cycle, also activation of the glycolysis pathway and genes related to ergosterol synthesis. Based on the analyses, potential SA-responsive promoters were investigated, among which the promoter strength of IMTCP2 and KLMA_50231 increased 43.4% and 154.7% in response to 15 g/L SA. In addition, overexpression of the transcription factors Gcr1, Upc2, and Ndt80 significantly increased growth under SA stress. Our results benefit understanding SA toxicity mechanisms and the development of robust yeast for organic acid production. KEY POINTS: • Global gene transcription of K. marxianus is changed by succinic acid (SA) • Promoter activities of IMTCP2 and KLMA_50123 are regulated by SA • Overexpression of Gcr1, Upc2, and Ndt80 enhanced SA tolerance.


Assuntos
Kluyveromyces , Ácido Succínico , Kluyveromyces/genética , Perfilação da Expressão Gênica , Transcriptoma
2.
Adv Appl Microbiol ; 126: 27-62, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38637106

RESUMO

Kluyveromyces marxianus is a non-Saccharomyces yeast that has gained importance due to its great potential to be used in the food and biotechnology industries. In general, K. marxianus is a known yeast for its ability to assimilate hexoses and pentoses; even this yeast can grow in disaccharides such as sucrose and lactose and polysaccharides such as agave fructans. Otherwise, K. marxianus is an excellent microorganism to produce metabolites of biotechnological interest, such as enzymes, ethanol, aroma compounds, organic acids, and single-cell proteins. However, several studies highlighted the metabolic trait variations among the K. marxianus strains, suggesting genetic diversity within the species that determines its metabolic functions; this diversity can be attributed to its high adaptation capacity against stressful environments. The outstanding metabolic characteristics of K. marxianus have motivated this yeast to be a study model to evaluate its easy adaptability to several environments. This chapter will discuss overview characteristics and applications of K. marxianus and recent insights into the stress response and adaptation mechanisms used by this non-Saccharomyces yeast.


Assuntos
Etanol , Kluyveromyces , Fermentação , Etanol/metabolismo , Biotecnologia , Kluyveromyces/genética , Kluyveromyces/metabolismo
3.
Bioresour Technol ; 399: 130627, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522677

RESUMO

Overexpression of a gene with unknown function in Kluyveromyces marxianus markedly improved tolerance to lignocellulosic biomass-derived inhibitors. This overexpression also enhanced tolerance to elevated temperatures, ethanol, and high concentrations of NaCl and glucose. Inhibitor degradation and transcriptome analyses related this K. marxianusMultiple Stress Resistance (KmMSR) gene to the robustness of yeast cells. Nuclear localization and DNA-binding domain analyses indicate that KmMsr is a putative transcriptional regulator. Overexpression of a mutant protein with deletion in the flexible region between amino acids 100 and 150 further enhanced tolerance to multiple inhibitors during fermentation, with ethanol production and productivity increasing by 36.31 % and 80.22 %, respectively. In simultaneous saccharification co-fermentation of corncob without detoxification, expression of KmMSR with the deleted flexible region improved ethanol production by 5-fold at 42 °C and 2-fold at 37 °C. Overexpression of the KmMSR mutant provides a strategy for constructing robust lignocellulosic biomass using strains.


Assuntos
Kluyveromyces , Zea mays , Zea mays/metabolismo , Fermentação , Kluyveromyces/genética , Kluyveromyces/metabolismo , Etanol/metabolismo
4.
World J Microbiol Biotechnol ; 40(4): 121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441729

RESUMO

Mezcal is a traditional Mexican distilled beverage, known for its marked organoleptic profile, which is influenced by several factors, such as the fermentation process, where a wide variety of microorganisms are present. Kluyveromyces marxianus is one of the main yeasts isolated from mezcal fermentations and has been associated with ester synthesis, contributing to the flavors and aromas of the beverage. In this study, we employed CRISPR interference (CRISPRi) technology, using dCas9 fused to the Mxi1 repressor factor domain, to down-regulate the expression of the IAH1 gene, encoding for an isoamyl acetate-hydrolyzing esterase, in K. marxianus strain DU3. The constructed CRISPRi plasmid successfully targeted the IAH1 gene, allowing for specific gene expression modulation. Through gene expression analysis, we assessed the impact of IAH1 down-regulation on the metabolic profile of volatile compounds. We also measured the expression of other genes involved in volatile compound biosynthesis, including ATF1, EAT1, ADH1, and ZWF1 by RT-qPCR. Results demonstrated successful down-regulation of IAH1 expression in K. marxianus strain DU3 using the CRISPRi system. The modulation of IAH1 gene expression resulted in alterations in the production of volatile compounds, specifically ethyl acetate, which are important contributors to the beverage's aroma. Changes in the expression levels of other genes involved in ester biosynthesis, suggesting that the knockdown of IAH1 may generate intracellular alterations in the balance of these metabolites, triggering a regulatory response. The application of CRISPRi technology in K. marxianus opens the possibility of targeted modulation of gene expression, metabolic engineering strategies, and synthetic biology in this yeast strain.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Kluyveromyces , Regulação da Expressão Gênica , Kluyveromyces/genética , Ésteres
5.
Rev. esp. quimioter ; 37(1): 93-96, Feb. 2024. ilus, tab
Artigo em Inglês | IBECS | ID: ibc-230427

RESUMO

Introduction. Non-albicans Candida species, such as Candida kefyr, are emerging pathogens. Chromogenic media are highly useful for the diagnosis of urinary tract infections (UTIs). The aim was to describe the behavior of this specie on a non-specific chromogenic medium. Material and methods. A retrospective study of cases of candiduria detected in the Microbiology laboratory of the Virgen de las Nieves Hospital in Granada (Spain) between 2016 and 2021 (N=2,130). Urine samples were quantitatively seeded on non-selective UriSelect™4 chromogenic agar. Results. Between 2016 and 2021, C. kefyr was the seventh most frequent Candida species responsible for candiduria in our setting (n=15). The macroscopic appearance of C. kefyr colonies, punctiform and bluish, allowed the direct identification of these microorganisms. Conclusions. This study provides the first description of the specific behavior of C. kefyr on UriSelect™4 agar, which differentiates it from other Candida species based on its enzymatic characteristics. (AU)


Introducción. Las especies de Candida no-albicans, como Candida kefyr, son patógenos emergentes. Los medios cromogénicos son muy útiles para el diagnóstico de infecciones del tracto urinario (ITU). El objetivo era describir el comportamiento de esta especie en un medio cromogénico no específico. Material y métodos. Estudio retrospectivo de casos de candiduria detectados en el laboratorio de Microbiología del Hospital Virgen de las Nieves de Granada (España) entre 2016 y 2021 (N=2.130). Las muestras de orina se sembraron cuantitativamente en agar cromogénico no selectivo Uri Select™4. Resultados. C. kefyr fue la séptima especie de Candida responsables de la candiduria en nuestro medio (n = 15). El aspecto macroscópico de las colonias de C. kefyr, puntiformes y azuladas, permitió su identificación presuntiva directamente. Conclusiones. Este estudio proporciona la primera descripción del comportamiento específico de C. kefyr en agar Uri Select™4, que lo diferencia de otras especies de Candida en función de sus características enzimáticas. (AU)


Assuntos
Humanos , Ágar , Candida , Candidíase/diagnóstico , Candidíase/microbiologia , Infecções Urinárias/microbiologia , Kluyveromyces , Estudos Retrospectivos
6.
Microb Cell Fact ; 23(1): 7, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172836

RESUMO

BACKGROUND: The 5´ untranslated region (5´ UTR) plays a key role in regulating translation efficiency and mRNA stability, making it a favored target in genetic engineering and synthetic biology. A common feature found in the 5´ UTR is the poly-adenine (poly(A)) tract. However, the effect of 5´ UTR poly(A) on protein production remains controversial. Machine-learning models are powerful tools for explaining the complex contributions of features, but models incorporating features of 5´ UTR poly(A) are currently lacking. Thus, our goal is to construct such a model, using natural 5´ UTRs from Kluyveromyces marxianus, a promising cell factory for producing heterologous proteins. RESULTS: We constructed a mini-library consisting of 207 5´ UTRs harboring poly(A) and 34 5´ UTRs without poly(A) from K. marxianus. The effects of each 5´ UTR on the production of a GFP reporter were evaluated individually in vivo, and the resulting protein abundance spanned an approximately 450-fold range throughout. The data were used to train a multi-layer perceptron neural network (MLP-NN) model that incorporated the length and position of poly(A) as features. The model exhibited good performance in predicting protein abundance (average R2 = 0.7290). The model suggests that the length of poly(A) is negatively correlated with protein production, whereas poly(A) located between 10 and 30 nt upstream of the start codon (AUG) exhibits a weak positive effect on protein abundance. Using the model as guidance, the deletion or reduction of poly(A) upstream of 30 nt preceding AUG tended to improve the production of GFP and a feruloyl esterase. Deletions of poly(A) showed inconsistent effects on mRNA levels, suggesting that poly(A) represses protein production either with or without reducing mRNA levels. CONCLUSION: The effects of poly(A) on protein production depend on its length and position. Integrating poly(A) features into machine-learning models improves simulation accuracy. Deleting or reducing poly(A) upstream of 30 nt preceding AUG tends to enhance protein production. This optimization strategy can be applied to enhance the yield of K. marxianus and other microbial cell factories.


Assuntos
Kluyveromyces , Regiões 5' não Traduzidas , Sequência de Bases , Kluyveromyces/genética , Kluyveromyces/metabolismo , RNA Mensageiro/genética
7.
Rev Esp Quimioter ; 37(1): 93-96, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37925628

RESUMO

OBJECTIVE: Non-albicans Candida species, such as Candida kefyr, are emerging pathogens. Chromogenic media are highly useful for the diagnosis of urinary tract infections (UTIs). The aim was to describe the behavior of this specie on a non-specific chromogenic medium. METHODS: A retrospective study of cases of candiduria detected in the Microbiology laboratory of the Virgen de las Nieves Hospital in Granada (Spain) between 2016 and 2021 (N=2,130). Urine samples were quantitatively seeded on non-selective UriSelect™4 chromogenic agar. RESULTS: Between 2016 and 2021, C. kefyr was the seventh most frequent Candida species responsible for candiduria in our setting (n=15). The macroscopic appearance of C. kefyr colonies, punctiform and bluish, allowed the direct identification of these microorganisms. CONCLUSIONS: This study provides the first description of the specific behavior of C. kefyr on UriSelect™4 agar, which differentiates it from other Candida species based on its enzymatic characteristics.


Assuntos
Candidíase , Kluyveromyces , Infecções Urinárias , Humanos , Ágar , Meios de Cultura , Estudos Retrospectivos , Candida , Candidíase/diagnóstico , Candidíase/microbiologia , Infecções Urinárias/microbiologia
8.
World J Microbiol Biotechnol ; 39(12): 342, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37828125

RESUMO

In the enzymatic synthesis of galacto-oligosaccharide (GOS), the primary by-products include glucose, galactose and unreacted lactose. This This study was aimed to provide a method to to purify GOS by yeat fermentation and explore the interaction between GOS and CAS with a view for expanding the prospects of GOS application in the food industry. The crude GOS(25.70 g/L) was purified in this study using the fermentation method with Kluyveromyces lactis CICC 1773. Optimal conditions for purification with the yeast were 75 g/L of the yeast inoculation rate and 50 g/L of the initial crude GOS concentration for 12 h of incubation. After removing ethanol produced by yeast by low-temperature distillation, GOS content could reach 90.17%. A study of the interaction between GOS and casein (CAS) in a simulated acidic fermentation system by D-(+)-gluconic acid δ-lactone (GDL) showed that the GOS/CAS complexes with higher GOS concentrations, e.g., 4% and 6% (w/v), was more viscoelastic with higher water-holding capacity, but decreased hardness, elasticity, and cohesiveness at 6% (w/v) of GOS. The addition of GOS to CAS suspension significantly caused (p<0.05) decreased particle sizes of the formed GOS/CAS complexes, and the suspension system became more stable. FT-IR spectra confirmed the existence of different forms of molecular interactions between CAS and GOS, e.g., hydrogen bonding and hydrophobic interaction, and the change of secondary structure after CAS binding to GOS.


Assuntos
Caseínas , Kluyveromyces , Fermentação , Espectroscopia de Infravermelho com Transformada de Fourier , Oligossacarídeos/metabolismo , Lactose/metabolismo , Galactose , beta-Galactosidase/metabolismo
9.
mSystems ; 8(6): e0084123, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37882535

RESUMO

IMPORTANCE: The food industry has always used many strains of microorganisms including fungi in their production processes. These strains have been widely characterized for their biotechnological value, but we still know very little about their interaction capacities with the host at a time when the intestinal microbiota is at the center of many pathologies. In this study, we characterized five yeast strains from food production which allowed us to identify two new strains with high probiotic potential and beneficial effects in a model of intestinal inflammation.


Assuntos
Kluyveromyces , Probióticos , Candida , Inflamação , Probióticos/uso terapêutico
10.
Food Microbiol ; 116: 104369, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37689420

RESUMO

In this study, two strains of lactic acid bacteria (Lacticaseibacillus paracasei GL1 and Lactobacillus helveticus SNA12) and one yeast strain of Kluyveromyces marxianus G-Y4 (G-Y4) isolated from Tibetan kefir grains were co-cultured. It was found that the addition of G-Y4 could not only promote the growth of lactic acid bacteria, but also increase the release of metabolites (lactic acid, ethanol, and amino nitrogen). Furthermore, the addition of live cells and cell-free fermentation supernatant (CFS) of G-Y4 could increase the ability of biofilm formation. Morever, the surface characteristics results showed that the addition of G-Y4 live cells could enhance the aggregation ability and hydrophobicity of LAB. Meanwhile, adding live cells and CFS of G-Y4 could promote the release of signaling molecule AI-2 and enhance the expression of the LuxS gene related to biofilm formation. In addition, Fourier-transform infrared spectroscopy and chemical composition analysis were used to investigate the composition of the biofilm, and the results indicated that the biofilm was mainly composed of a small amount of protein but it was rich in polysaccharides including glucose, galactose, and mannose with different ratios. Finally, the formation of biofilm could delay the decline of the number of viable bacteria in storage fermented milk.


Assuntos
Kluyveromyces , Lacticaseibacillus paracasei , Lactobacillus helveticus , Lacticaseibacillus , Lactobacillus helveticus/genética , Kluyveromyces/genética , Biofilmes
11.
Iran Biomed J ; 27(5): 320-25, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37525429

RESUMO

Background: Mannoproteins, mannose-glycosylated proteins, play an important role in biological processes and have various applications in industries. Several methods have been already used for the extraction of mannoproteins from yeast cell-wall. The aim of this study was to evaluate the extraction and deproteinization of mannan oligosaccharide from the Kluyveromyces (K.) marxianus mannoprotein. Methods: To acquire crude mannan oligosaccharides, K. marxianus mannoproteins were deproteinized by the Sevage, trichloroacetic acid, and hydrochloric acid (HCL) methods. Total nitrogen, crude protein content, fat, carbohydrate and ash content were measured according to the monograph prepared by the meeting of the Joint FAO/WHO Expert Committee and standard. Mannan oligosaccharide loss, percentage of deproteinization, and chemical composition of the product were assessed to check the proficiency of different methods. Results: Highly purified (95.4%) mannan oligosaccharide with the highest deproteinization (97.33 ± 0.4%) and mannan oligosaccharide loss (25.1 ± 0.6%) were obtained following HCl method. Conclusion: HCl, was the most appropriate deproteinization method for the removal of impurities. This preliminary data will support future studies to design scale-up procedures.


Assuntos
Kluyveromyces , Mananas , Mananas/química , Mananas/metabolismo , Kluyveromyces/química , Kluyveromyces/metabolismo , Glicoproteínas de Membrana/metabolismo , Oligossacarídeos/metabolismo
12.
Biotechnol Bioeng ; 120(12): 3543-3556, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641876

RESUMO

Aldo-keto reductases (AKRs) are important biocatalysts that can be used to synthesize chiral pharmaceutical alcohols. In this study, the catalytic activity and stereoselectivity of a NADPH-dependent AKR from Kluyveromyces dobzhanskii (KdAKR) toward t-butyl 6-chloro (5S)-hydroxy-3-oxohexanoate ((5S)-CHOH) were improved by mutating its residues in the loop regions around the substrate-binding pocket. And the thermostability of KdAKR was improved by a consensus sequence method targeted on the flexible regions. The best mutant M6 (Y28A/L58I/I63L/G223P/Y296W/W297H) exhibited a 67-fold higher catalytic efficiency compared to the wild-type (WT) KdAKR, and improved R-selectivity toward (5S)-CHOH (dep value from 47.6% to >99.5%). Moreover, M6 exhibited a 6.3-fold increase in half-life (t1/2 ) at 40°C compared to WT. Under the optimal conditions, M6 completely converted 200 g/L (5S)-CHOH to diastereomeric pure t-butyl 6-chloro-(3R, 5S)-dihydroxyhexanoate ((3R, 5S)-CDHH) within 8.0 h, with a space-time yield of 300.7 g/L/day. Our results deepen the understandings of the structure-function relationship of AKRs, providing a certain guidance for the modification of other AKRs.


Assuntos
Caproatos , Kluyveromyces , Aldo-Ceto Redutases/genética , Aldo-Ceto Redutases/química , Catálise , Aldeído Redutase/genética
13.
Appl Microbiol Biotechnol ; 107(16): 5095-5105, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37405435

RESUMO

Saccharomyces cerevisiae is the workhorse of fermentation industry. Upon engineering for D-lactate production by a series of gene deletions, this yeast had deficiencies in cell growth and D-lactate production at high substrate concentrations. Complex nutrients or high cell density were thus required to support growth and D-lactate production with a potential to increase medium and process cost of industrial-scale D-lactate production. As an alternative microbial biocatalyst, a Crabtree-negative and thermotolerant yeast Kluyveromyces marxianus was engineered in this study to produce high titer and yield of D-lactate at a lower pH without growth defects. Only pyruvate decarboxylase 1 (PDC1) gene was replaced by a codon-optimized bacterial D-lactate dehydrogenase (ldhA). Ethanol, glycerol, or acetic acid was not produced by the resulting strain, KMΔpdc1::ldhA. Aeration rate at 1.5 vvm and culture pH 5.0 at 30 °C provided the highest D-lactate titer of 42.97 ± 0.48 g/L from glucose. Yield and productivity of D-lactate, and glucose-consumption rate were 0.85 ± 0.01 g/g, 0.90 ± 0.01 g/(L·h), and 1.06 ± 0.00 g/(L·h), respectively. Surprisingly, D-lactate titer, productivity, and glucose-consumption rate of 52.29 ± 0.68 g/L, 1.38 ± 0.05 g/(L·h), and 1.22 ± 0.00 g/(L·h), respectively, were higher at 42 °C compared to 30 °C. Sugarcane molasses, a low-value carbon, led to the highest D-lactate titer and yield of 66.26 ± 0.81 g/L and 0.91 ± 0.01 g/g, respectively, in a medium without additional nutrients. This study is a pioneer work of engineering K. marxianus to produce D-lactate at the yield approaching theoretical maximum using simple batch process. Our results support the potential of an engineered K. marxianus for D-lactate production on an industrial scale. KEY POINTS: • K. marxianus was engineered by deleting PDC1 and expressing codon-optimized D-ldhA. • The strain allowed high D-lactate titer and yield under pH ranging from 3.5 to 5.0. • The strain produced 66 g/L D-lactate at 30 °C from molasses without any additional nutrients.


Assuntos
Kluyveromyces , Ácido Láctico , Saccharomyces cerevisiae/metabolismo , Kluyveromyces/genética , Kluyveromyces/metabolismo , L-Lactato Desidrogenase/metabolismo , Glucose , Piruvato Descarboxilase/genética , Piruvato Descarboxilase/metabolismo , Concentração de Íons de Hidrogênio , Fermentação
14.
Molecules ; 28(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37513409

RESUMO

Whey is a dairy residue generated during the production of cheese and yogurt. Whey contains mainly lactose and proteins, contributing to its high chemical oxygen demand (COD). Current environmental regulations request proper whey disposal to avoid environmental pollution. Whey components can be transformed by yeast into ethanol and biomolecules with aroma and flavor properties, for example, 2-phenyethanol (2PE), highly appreciated in the industry due to its organoleptic and biocidal properties. The present study aimed to valorize agri-food residues in 2PE by developing suitable bioprocess. Cheese whey was used as substrate source, whereas crab headshells, residual soy cake, and brewer's spent yeast (BSY) were used as renewable nitrogen sources for the yeasts Kluyveromyces marxianus and Debaryomyces hansenii. The BSYs promoted the growth of both yeasts and the production of 2PE in flask fermentation. The bioprocess scale-up to 2 L bioreactor allowed for obtaining a 2PE productivity of 0.04 g2PE/L·h, twofold better productivity results compared to the literature. The bioprocess can save a treatment unit because the whey COD decreased under the detection limit of the analytical method, which is lower than environmental requirements. In this way, the bioprocess prevents environmental contamination and contributes to the circular economy of the dairy industry.


Assuntos
Queijo , Kluyveromyces , Álcool Feniletílico , Fermentação , Álcool Feniletílico/metabolismo , Técnicas de Cocultura , Leveduras/metabolismo , Kluyveromyces/metabolismo , Proteínas do Soro do Leite/metabolismo , Soro do Leite/metabolismo , Lactose/metabolismo
15.
J Agric Food Chem ; 71(23): 8991-8997, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37272733

RESUMO

Production of 2-phenylethanol (2-PE) via Kluyveromyces marxianus is well-established. However, co-culture with other microbes in combination with in situ product recovery (ISPR) yields improved selectivity and volumetric productivity. Fermentation ofK. marxianus (MUCL 53775) with direct inclusion of absorptive polymer Hytrel3548 achieved ISPR, but accumulation of the byproduct phenylethyl acetate (PEA) was strongly favored. Co-culture of K. marxianus (MUCL 53775) with Meyerozyma guilliermondii (MUCL 28072) with ISPR limited PEA production, thereby improving the 2-PE selectivity from 13 to 90%, compared to a pure culture of K. marxianus (MUCL 53775) under similar conditions. This improved the volumetric productivity by 85% compared to 2-PE ISPR with a pure culture of K. marxianus. This is the first report of co-culture in a two-phase fermentation for 2-PE bioproduction and demonstrates that interactions between co-culture and ISPR techniques can modulate bioproduction between 2-PE and byproduct PEA, and this technique will be explored for other strain combinations and for other high-value molecules of interest.


Assuntos
Kluyveromyces , Álcool Feniletílico , Técnicas de Cocultura , Fermentação , Acetatos
16.
World J Microbiol Biotechnol ; 39(8): 216, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37269405

RESUMO

Kluyveromyces marxianus yeasts represent a valuable industry alternative due to their biotechnological potential to produce aromatic compounds. 2-phenylethanol and 2-phenylethylacetate are significant aromatic compounds widely used in food and cosmetics due to their pleasant odor. Natural obtention of these compounds increases their value, and because of this, bioprocesses such as de novo synthesis has become of great significance. However, the relationship between aromatic compound production and yeast's genetic diversity has yet to be studied. In the present study, the analysis of the genetic diversity in K. marxianus isolated from the natural fermentation of Agave duranguensis for Mezcal elaboration is presented. The results of strains in a haploid and diploid state added to the direct relationship between the mating type locus MAT with metabolic characteristics are studied. Growth rate, assimilate carbohydrates (glucose, lactose, and chicory inulin), and the production of aromatic compounds such as ethyl acetate, isoamyl acetate, isoamyl alcohol, 2-phenylethyl butyrate and phenylethyl propionate and the diversity in terms of the output of 2-phenylethanol and 2-phenylethylacetate by de novo synthesis were determinate, obtaining maximum concentrations of 51.30 and 60.39 mg/L by ITD0049 and ITD 0136 yeasts respectively.


Assuntos
Kluyveromyces , Álcool Feniletílico , Álcool Feniletílico/metabolismo , Odorantes , Kluyveromyces/genética , Leveduras/genética , Leveduras/metabolismo , Fermentação , Lactose/metabolismo
17.
J Agric Food Chem ; 71(23): 9031-9039, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37261812

RESUMO

Lacto-N-biose (LNB) is a member of the human milk oligosaccharide (HMO) family and is synthesized via an enzymatic reaction in vitro with N-acetylglucosamine (GlcNAc) and cofactors. In this study, LNB was synthesized using a cell factory for the first time. First, three modules were constructed in Kluyveromyces lactis for producing LNB from lactose and GlcNAc without the addition of cofactors. Second, a de novo pathway was constructed in K. lactis for producing LNB from lactose without adding GlcNAc. Finally, a transcriptional switch was introduced into K. lactis to reprogram its metabolic network for improving the flux from GlcNAc-6-P to GlcNAc in the de novo pathway. Subsequently, a final LNB yield of 10.41 g/L, similar to the salvage pathway yield, was achieved through the de novo pathway. The engineered K. lactis provides a promising technology platform for the industrial scale production of LNB.


Assuntos
Kluyveromyces , Lactose , Humanos , Oligossacarídeos/metabolismo , Redes e Vias Metabólicas , Kluyveromyces/genética , Kluyveromyces/metabolismo
18.
Food Chem ; 426: 136526, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37307741

RESUMO

Native whey obtained during casein micelle microfiltration was used as a novel source to produce galacto-oligosaccharides (GOS). Since the presence of macromolecules and other interferers reduces biocatalyst performance, this work evaluated the effect of different ultrasound processing conditions on GOS synthesis using concentrated native whey. Ultrasonic intensities (UI) below 11 W/cm2 tended to increase the activity in the enzyme from Aspergillus oryzae for several minutes but accelerated the inactivation in that from Kluyveromyces lactis. At 40 °C, 40 % w/w native whey, 70 % wave amplitude, and 0.6 s/s duty-cycle, a UI of 30 W/cm2 was achieved, and the increased specific enzyme productivity was similar to the values obtained with pure lactose (∼0.136 g GOS/h/mgE). This strategy allows for obtaining a product containing prebiotics with the healthy and functional properties of whey proteins, avoiding the required purification steps used in the production of food-grade lactose.


Assuntos
Aspergillus oryzae , Kluyveromyces , Soro do Leite/metabolismo , Proteínas do Soro do Leite/metabolismo , beta-Galactosidase/metabolismo , Lactose/metabolismo , Galactose/metabolismo , Oligossacarídeos/metabolismo
19.
Enzyme Microb Technol ; 169: 110263, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37311284

RESUMO

Galacto-oligosaccharides (GOS) are used as prebiotic ingredients in various food and pharmaceutical industry. At present, production of GOS involves the enzymatic transformation of lactose by transgalactosylation using ß-galactosidase. The yeast Kluyveromyces lactis can utilize lactose as its carbon and energy source. In this species lactose is hydrolyzed by an intracellular ß-galactosidase (EC 3.2.1.23) which is induced by its substrate and related compounds like galactose. The molecular details of gene regulation in kluyveromyces lactis, we have used multiple knockout approaches to study the constitutive expression by which galactose induces ß-galactosidase. The present study involved carrying out to a method of enhancing the constitutive expression of ß-galactosidase through galactose induction and its trans-galactosylation reaction for the production of galacto-oligosaccharides (GOS) in Kluyveromyces lactis (K. Lactis) by applying a knockout based approach on Leloir pathway genes based on fusion-overlap extension polymerase chain reaction and transformation into its genome. The k.lactis strain subjected to Leloir pathway genes knockout, resulted in the accumulation of galactose intracellularly and this internal galactose acts as an inducer of galactose regulon for constitutive expression of ß-galactosidase at early stationary phase was due to the positive regulatory function of mutant gal1p, gal7p and both. These resulted strains used for trans-galactosylation of lactose by ß - galactosidase is characterized for the production of galacto-oligosaccharides. Galactose-induced constitutive expression of ß-galactosidase during the early stationary phase of knockout strains was analysed qualitatively & quantitatively. The activity of ß-galactosidase of wild type, gal1z, gal7k and gal1z & gal7k strains were 7, 8, 9 and 11 U/ml respectively using high cell density cultivation medium. Based on these expression differences in ß-galactosidase, the trans-galactosylation reaction for GOS production and percentage yield of GOS were compared at 25% w/v of lactose. The percentage yield of GOS production of wild type, Δgal1z Lac4+, Δgal7k Lac4++ and Δgal1z Δgal7k Lac4+++mutants strains were 6.3, 13, 17 and 22 U/ml, respectively. Therefore, we propose that the availability of galactose can be used for constitutive over expression of ß - galactosidase in Leloir pathway engineering applications and also for GOS production. Further, increased expression of ß - galactosidases can be used in dairy industry by-products like whey to produce added value products such as galacto-oligosaccharides.


Assuntos
Kluyveromyces , Lactose , Lactose/metabolismo , Galactose/metabolismo , Oligossacarídeos/metabolismo , Kluyveromyces/genética , Kluyveromyces/metabolismo , beta-Galactosidase/metabolismo
20.
Int J Biol Macromol ; 242(Pt 1): 124734, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37150366

RESUMO

The Inulinase from Kluyveromyces marxianus ISO3 (Inu-ISO3) is an enzyme able to hydrolyze linear fructans such as chicory inulin as well as branched fructans like agavin. This enzyme was cloned and expressed in Komagataella pastoris to study the role of selected aromatic and polar residues in the catalytic pocket by Alanine scanning. Molecular dynamics (MD) simulations and enzyme kinetics analysis were performed to study the functional consequences of these amino acid substitutions. Site-directed mutagenesis was used to construct the mutants of the enzyme after carrying out the MD simulations between Inu-ISO3 and its substrates. Mutation Trp79:Ala resulted in the total loss of activity when fructans were used as substrates, while with sucrose, the activity decreased by 98 %. In contrast, the mutations Phe113:Ala and Gln236:Ala increased the invertase activity when sucrose was used as a substrate. Although these amino acids are not part of the conserved motifs where the catalytic triad is located, they are essential for the enzyme's activity. In silico and experimental approaches corroborate the relevance of these residues for substrate binding and their influence on enzymatic activity.


Assuntos
Kluyveromyces , Simulação de Dinâmica Molecular , Glicosídeo Hidrolases/química , Kluyveromyces/genética , Frutanos/metabolismo , Aminoácidos/metabolismo , Sacarose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...